CIll: CTI-Guided Invariant Generation via LLMs
for Model Checking

Yuheng Su'>2, Tianjun Bu'?, Qiusong Yang'*, Yiwei Ci!, and Enyuan Tian'?
! Institute of Software, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
gipsyh.icu@gmail.com
butianjun24@mails.ucas.ac.cn
{qiusong,yiwei}@iscas.ac.cn
tianenyuan22@mails.ucas.ac.cn

Abstract. Inductive invariants are crucial in model checking, yet gener-
ating effective inductive invariants automatically and efficiently remains
challenging. A common approach is to iteratively analyze counterexam-
ples to induction (CTIs) and derive invariants that rule them out, as
in IC3. However, IC3’s clause-based learning is limited to a CNF repre-
sentation. For some designs, the resulting invariants may require a large
number of clauses, which hurts scalability. We present CIll (CTI-guided
Invariant generation via LLMs), a CTI-guided framework that lever-
ages large language models (LLMs) to synthesize invariants for model
checking. CIll alternates between (bounded) correctness checking and in-
ductiveness checking for the generated invariants. In correctness check-
ing, CIll uses BMC to validate whether the generated invariants hold
on reachable states within a given bound. If a violation is found, the
returned counterexample guides the LLM to revise. In inductiveness
checking, CIIl checks whether the generated invariants, together with
the target property, become inductive under the accumulated strength-
ening. When inductiveness fails, CIIl extracts CTIs and provides them
to the LLM. The LLM inspects the design and the CTI to propose new
invariants that invalidate the CTIs. The proposed invariants are then
re-validated through correctness and inductiveness checks, and the loop
continues until the original property strengthened by the generated in-
variants becomes inductive. CIll also employs IC3 to work with the LLM
for automatically discovering invariants, and uses K-Induction as a com-
plementary engine. To improve performance, CIll applies local proof and
reuses invariants learned by IC3, reducing redundant search and acceler-
ating convergence. In our evaluation, CIll proved full compliance within
RISCV-Formal framework and full accuracy of all non-M instructions
in NERV and PicoRV32, whereas M extensions are proved against the
RVFI ALTOPS substitute semantics provided by RISCV-Formal. To our
knowledge, this is beyond state-of-the-art model checkers.

Keywords: Formal Verification - Model Checking - Large Language
Models.

* Qiusong Yang is the corresponding author.



2 Y. Su et al.

1 Introduction

As the complexity of modern systems, such as hardware designs, continues to
escalate, traditional simulation-based testing fails to exhaustively explore all
the possible behaviors. Model checking [TTJ12] is a formal verification technique
that enables the exhaustive exploration of all potential states. By analyzing
a transition system against a property that specifies desired behavior, model
checking can automatically and efficiently detect property violations or provide
a rigorous proof that the property holds across all reachable states.

However, model checking is inherently limited by the state explosion prob-
lem, where the size of the state space grows exponentially with the number of
state variables. Consequently, since the inception of model checking, substantial
research effort has been dedicated to improving its scalability. Among existing
techniques, Bounded Model Checking (BMC) [9] is highly effective at detecting
bugs within a finite bound, but it cannot prove overall system correctness when
the system’s maximum depth is unknown. In contrast, IC3 [10] (also known as
PDR [I4]) can prove system correctness by incrementally constructing inductive
invariants. Furthermore, it has demonstrated superior scalability in hardware
verification compared to other complete approaches, such as Interpolation-based
Model Checking (IMC) [I8] and K-Induction [23].

These techniques can handle problems of considerable scale, allowing model
checking to be widely adopted in the industry [21I3120]. Nevertheless, when deal-
ing with highly complex designs or intricate properties, there are still cases where
results cannot be obtained within a finite time. For example, in the 2025 Hard-
ware Model Checking Competition (HWMCC) [2], 46 cases remained unsolved
by any participating model checker. Therefore, further enhancing scalability re-
mains a significant and necessary research objective.

The core of IC3 lies in the derivation of inductive invariants, which is achieved
by incrementally constructing relatively inductive invariants and iteratively de-
riving the global inductive invariant. However, the invariants generated by IC3
are typically represented in Conjunctive Normal Form (CNF) over the state
variables. When the required invariant is inherently complex and cannot be
efficiently captured by this two-layer structure, IC3 often suffers from a combi-
natorial explosion of clauses, leading to a significant degradation in performance.
For instance, without the aid of auxiliary variables, a CNF-based representation
cannot succinctly express the continuous XOR sum of some variables.

The use of internal signals [I3] attempts to alleviate this problem by incor-
porating internal circuit signals into the CNF as auxiliary variables, rather than
relying solely on registers, thereby enhancing the expressiveness of invariants.
Nevertheless, this approach becomes ineffective when no suitable internal sig-
nals are available to compactly represent the desired invariants. Another line of
work applies Extended Resolution to IC3 [I7], introducing auxiliary variables
that do not originally appear in the system by means of predefined templates, in
order to capture more complex invariants. Although this strategy offers certain
improvements, it still inadequate to cope with the wide diversity of invariant
representations encountered across different models.



CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 3

Recent advances in Large Language Models (LLMs) have demonstrated a
strong ability to understand diverse models and reason about complex structures,
along with impressive mathematical capabilities [26l28]. These properties suggest
that LLMs may be well suited for generating inductive invariants that go beyond
fixed templates or internal signals, and thus have the potential to improve the
scalability of model checking.

Motivated by this observation, we explore the use of LLMs to assist invariant
generation in an interactive and counterexample-driven manner. In this paper,
we introduce CIll (CTI-guided Invariant generation via LLMs), a framework that
leverages counterexamples to induction (CTIs) to guide an LLM in synthesizing
invariants for model checking. The contributions of our work can be summarized
as follows:

— We propose CIIl, a CTI-guided framework that leverages LLMs to synthesize
invariants for model checking. CIll follows an iterative guess-and-check loop
that alternates bounded correctness checking and inductiveness checking.
Counterexamples and CTIs are fed back to the LLM to revise incorrect or
non-inductive invariants until the original property becomes inductive under
the accumulated strengthening.

— We introduce IC3 into CIIl to work in conjunction with the LLM for automat-
ically discovering invariants, and we adopt K-Induction as a complementary
proving engine. We further apply local proof and reuse invariants learned by
1C3, reducing redundant search and accelerating convergence.

— We implement CIll in the rIC3 model checker [24] for RTL-level hardware
verification, enabling source-level reasoning over HDL and practical trace
inspection through MCP-based querying.

— We evaluate CIIl by testing RISCV-Formal compliance of the NERV, Pi-
coRV32 and SERV cores. CIIl with the rIC3 model checker successfully veri-
fied full compliance to the RISC-V specifications in the NERV and PicoRV32
cores (ALTOPS semantics for M-type instruction checks), which state-of-the-
art model checkers have not yet achieved.

2 Preliminaries

2.1 Transition System

We denote Boolean variables as x,y and sets of variables as X,Y. A literal is
either a variable x or its negation —z. A cube is a conjunction of literals, while a
clause is a disjunction of literals. A formula in Conjunctive Normal Form (CNF)
is a conjunction of clauses. It is often convenient to treat a clause or a cube as a
set of literals, and a CNF formula as a set of clauses. For instance, given a CNF
formula F, a clause ¢, and a literal [, we write [ € ¢ to indicate that [ occurs in
¢, and ¢ € F' to indicate that ¢ belongs to F'.

A transition system S is defined as a tuple (X,Y,I,T), where X and X’
represent the sets of state variables for the current and next states, respectively,
and Y denotes the set of input variables. The Boolean formula I(X) defines



4 Y. Su et al.

the initial states, and T'(X,Y, X’) describes the transition relation. A state so
is a successor of sp if and only if there exists an input assignment y € Y such
that T'(s1,y, s2) is satisfied. A property P(X) is a Boolean formula over X. The
system S satisfies P (denoted as S |= P) if and only if all states reachable from
the initial states I satisfy P. If S satisfies P, then P is called an invariant of
S. We refer to states reachable from I (including I) as reachable states, and
states that can reach a state satisfying =P as bad states (including —P).

2.2 Induction, CTI, and K-Induction

A property P is said to be inductive with respect to a transition system S if it
satisfies the following two conditions:

— Base Case: [ = P
— Inductive Step: PAT = P’

If a property P is inductive, it can be proven that all reachable states of S satisfy
P. In this case, P is not only an invariant of S but is also specifically referred
to as an inductive invariant.

If a property P is not inductive, then there exists a Counterexample to
Induction (CTI). Concretely, a CTI is a state s such that s = P, but s has a
successor s’ that violates P:

Jy, 8" P(s) AT(s,y,8) A—P(s).

Moreover, if P is an invariant but not inductive, then every CTI must be un-
reachable from the initial states. Otherwise, one could reach s from an initial
state and then take the transition to s’ with s’ = =P, contradicting the fact that
an invariant holds on all reachable states. Therefore, for a non-inductive invari-
ant, the negation of any CTI state s (i.e., the clause —s) is itself an invariant,
since s is unreachable.

The concept of induction can be generalized to K-Induction. A property P
is said to be k-inductive if it satisfies:

— Base Case: All states reachable within & — 1 steps from the initial states
satisfy P. Formally, for any path sg,s1,...,85_1:

k—2 k—1
<I(80) A T(Sivyi,si—‘rl)) = A P(s:)
i=0 1=0

— Inductive Step: For any path s, Spt1,-. -, Sntk, if the first k states satisfy
P, then the (k + 1)-th state must also satisfy P:

n+k—1 n+k—1
( /\ P(s;) A /\ T(Siayi75i+l)>ép(5n+k)

=n



CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 5

Standard induction can be seen as l-induction. Accordingly, a k-CTI is a
sequence of states sg, ..., si_1 such that every state in the sequence satisfies the
property P, and consecutive states are connected by valid transitions. However,
there exists a successor s of s;_1 that violates P.

A formula P is said to be relatively inductive with respect to a formula
Q if and only if

PAQAT = P.

2.3 IC3

The IC3 algorithm aims to prove that a system S satisfies a property P by
incrementally constructing an inductive invariant Inv that implies P. It main-
tains a sequence of CNF formulas, called frames Fy, ..., F, each of which over-
approximates the set of states reachable from the initial states I within i steps.
The algorithm proceeds via two primary mechanisms: blocking and propagation.

Blocking. When IC3 discovers a bad state s in Fj, it treats s as a proof
obligation. It then tries to show that s cannot be reached within k steps by
proving that the blocking clause —s is inductive relative to Fj_1. If —s is not rel-
atively inductive, IC3 recursively creates new proof obligations for predecessors
of s with respect to Fj_1. The recursion terminates either when Fj intersects the
set of bad states, or when all such predecessors have been shown unreachable.
In the latter case, IC3 concludes that s is unreachable in F} and generalizes the
clause by dropping literals while preserving relative inductiveness.

Propagation. After blocking bad states at the current frontier k, IC3 enters
the propagation phase. For each frame F;, it checks whether any clause ¢ € F;
is inductive relative to Fj itself. If so, ¢ can be pushed forward to Fjy;. The
algorithm terminates and concludes that P is invariant once it reaches a frame
F; such that F; = F; 1. At this point, F; is an inductive invariant that implies
P, and thus serves as a strengthening for P.

3 Motivation

To distinguish the target property from the invariants generated to prove it,
we refer to the assertion to be verified as the original assertion. Any additional
assertions constructed to help establish the original assertion are referred to as
helper assertions.

Listing shows a simple pipelined RTL design. The original assertion o_1
(i.e.,, d1 = d2) is not inductive, since there exists a CTI satisfying d1 = d2
and 71 + 72 # 73 + 74 that leads to d1’ # d2’ in the next cycle, violating
o_1. Therefore, o_1 cannot be proved directly. However, there exists a very
simple inductive invariant (helper assertion) h_1: r1+72 = r3+r4. Once h_1 is
established, o_1 becomes inductive under this strengthening and can be verified.

However, constructing an invariant like h_1 is nontrivial for IC3. At the
semantic level, h_1 is the only inductive invariant sufficient to prove o_1 for this



6 Y. Su et al.

Listing 1.1. A simple pipelined example

module pipe #(
parameter W = 16

) (
input clk, rst_n,
input [W-1:0] a, b, ¢

);
reg [W-1:0] r1, r2, r3, r4, d1, 42;
always @(posedge clk) begin
if (!rst_n) begin
{r1, r2, r3, r4, di, d2} <= 0;
end else begin
rl <= a + b; r2 <= c;
r3 <= a + c; r4d <= b;
dl <=1l + r2; d2 <= r3 + r4;
h_1: assert (rl + r2 == r3 + r4d);
o_1: assert (d1 == d42);
end
end
endmodule

design. Therefore, to prove the system, IC3 must discover an inductive invariant
that is semantically equivalent to h_1.

For standard IC3, representing the invariant r1 + r2 = r3 + r4 using a two-
level syntactic representation (CNF) over bit-blasted state variables (without
introducing auxiliary variables) is prohibitively expensive. The relation involves
4W wvariables, where even the least significant bit induces a parity constraint
(r1[0] @ r2[0] @ r3[0] ® r4[0] = 0) requiring 2~ = 8 clauses to exclude odd-
parity assignments. The complexity arises primarily from the carry propagation:
the equality of the i-th sum bits depends on the carry generated by all preceding
bits 0,...,7— 1. Without auxiliary variables to capture these intermediate carry
states, the CNF must implicitly encode the full carry logic, forcing the number
of clauses to grow exponentially with the bit-width W. Specifically, it requires
at least £2(2") clauses to represent the invariant in the bit-level state space.

IC3-INN [I3] extends IC3 by allowing internal RTL signals to be introduced
as variables in the CNF, which can be beneficial on this example. However, the
resulting proofs are not robust: under a different random seed, the solver may fail
to converge. In this design, IC3-INN may expose internal signals corresponding
to the expressions r1+r2 and 734 r4. Nevertheless, it typically does not expose
the relational predicate (r1+7r2) = (r3+4r4) as an internal signal. Consequently,
IC3-INN must still synthesize this relation from the two separate sum signals.
This task is further complicated by bit-blasting. Each of r1 4+ r2 and r3 + r4
is decomposed into W Boolean variables, so establishing word-level equality
amounts to equating the two W-bit vectors bit-by-bit. Such bit-level alignment




CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 7

E] Design & Original Assertion ] @ Failed Original Asserti
[ 1 Correctness @ BMC —) @ ngl\r;?ola:eszr fon

— Checking

Invariant @ @ b— @ Effectiveness Checking

Generation

Trace i E
Y v | | | EXEN)

] H Origif
Trace € |nductiveness —_— @ E

Analysi ! Faled ! checki -
aLYSIS Trace : : ecking ] 5
Y Inspection @ K-Induction

Fig. 1. CIll Workflow

is fragile, without an explicit predicate, IC3 must piece together W correlated
bit-equalities, making it highly sensitive to the learned clauses.

Recent advances in large language models (LLMs) make it increasingly feasi-
ble for automated tools to understand RTL and its associated properties[29125].
Building on this, LLMs may be leveraged to reason about RTL at the design level.
By analyzing the intended state transitions, an LLM can directly propose global,
high-level invariants, such as h_1, rather than leaving IC3 to incrementally dis-
cover finite-step invariants while operating purely over CNF. These invariants
can guide the model checker toward a small set of proof-critical signals and rela-
tional predicates, instead of relying on whichever internal signals happen to be
exposed. Injecting this additional structure can substantially accelerate model
checking.

4 ClIl

Generating helper assertions to assist in verifying the original property is a
possible approach. However, not every assertion is effective for this purpose, so
we require helper assertions to satisfy several key features:

— Correctness. The helper assertion must be correct, i.e., it is indeed an
invariant of the design.

— Effectiveness. The helper assertion should be effective for verification by
ruling out the CTIs of another non-inductive assertion.

— Inductiveness. Ideally, the helper assertion is inductive. Otherwise, ad-
ditional helper assertions may be needed to further strengthen it until it
becomes inductive.

We introduce CIll (CTI-guided Invariant generation via LLMs), a framework
that uses CTIs to guide LLMs to generate invariants. CIII feeds the CTTs of a



8 Y. Su et al.

' \

r \
State Space State Space
H
J

r r \
State Space State Space
] d
LoD
- ‘C

r

Fig. 2. Impact of helper assertions on the state space. I denotes the set of initial states,
R the set of reachable states, P the original assertion, and B the set of bad states.

non-inductive assertion to the LLM, together with information about the design,
and the LLM proposes helper assertions. We then check whether the generated
assertions satisfy the three features above. If any feature is violated, we return
the counterexample to the LLM and ask it to revise the generated assertion. This
loop repeats until the original property can be verified under the strengthening.

In this paper, we focus on proving correctness rather than searching for coun-
terexamples. Although we restrict attention to proof, we do not view proving
and bug finding as opposing goals: stronger invariants can prune the state space
and may also help expose counterexamples when bugs exist. Nevertheless, for
clarity and simplicity, this work concentrates on proving correctness.

4.1 Overview

illustrates the overall workflow of CIIl. CIll takes as input the design
source code and the original assertion to be verified. In the first round, it per-
forms correctness checking and inductiveness checking
to determine whether a real bug can be found or the property

can be proved without any helper assertions.
If this is not possible, a failure of inductiveness checking triggers trace anal-

ysis (subsection 4.4) and LLM-based invariant generation (subsection 4.5)).



CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 9

By analyzing the returned CTI, the LLM identifies why the assertion is not in-
ductive and synthesizes helper assertions to block that CTI. After generating
helper assertions, CIll enters an iterative loop: (1) it first runs bounded cor-
rectness checking using BMC to filter out incorrect helpers early. If a helper
is incorrect, CIIl extracts the counterexample trace from BMC and feeds it back
to the LLM for refinement. (2) If correctness checking passes, CIll performs an
effectiveness check to determine whether the current helpers eliminate the
CTI . If not, CIll re-invokes the LLM to revise the helpers ac-
cordingly. (3) If the effectiveness check succeeds, CIll performs inductiveness
checking again to test whether the strengthened assertion set is inductive and
whether the original assertion becomes provable under these helpers. The loop
terminates when all assertions (including the original one) are proved inductive,
in which case CIII proves the original assertion.

4.2 Correctness Checking

If a reachable state violates a helper assertion (e.g. HO in[Figure 2(a)), the helper
can never be made inductive, and it can severely hinder subsequent attempts.
Therefore, whenever such a violation is detected, it should be fed back to the
LLM as early as possible.

Fully proving the correctness of a candidate helper, however, can be ex-
pensive. We thus adopt a pragmatic compromise: we use BMC to search for
violations up to a given depth, in order to catch incorrect helpers as much as
possible. To improve checking efficiency and reduce the chance of missing coun-
terexamples, we run BMC in parallel with multiple workers, each using a different
bound. Among the counterexamples found, we pass the shortest ones to the LLM
to facilitate diagnosis and revision.

Nevertheless, it is possible that a helper assertion is incorrect but BMC fails
to find a counterexample within the time budget. In such cases, we cannot reli-
ably address the issue at this stage. We can only hope that the LLM will detect
the problem later, when it becomes apparent that the helper can never be made
inductive.

4.3 Inductiveness Checking

Inductiveness checking is typically performed via a SAT query, as introduced
in However, this naive approach can be inefficient in practice. The
inductive invariants needed to prove a property may not admit a concise rep-
resentation, even if they can be described at a high level. More commonly, the
system contains many control branches, and different cases require different in-
variants. If we rely solely on a single SAT query and repeatedly send CT1Is to the
LLM, the LLM may require many refinement rounds and generate many helper
assertions before convergence. Moreover, inductiveness is a strong requirement
with many subtle details, which makes analyzing each CTI expensive.

To reduce the LLM workload as much as possible, we incorporate 1C3-
based automatic invariant learning into inductiveness checking. As shown in



10 Y. Su et al.

c), the helper assertion Hs is not inductive and must be revised or
strengthened to make the CTI (states ¢ and d) ineffective. Instead of sending
this CTI to the LLM immediately, we first invoke IC3 on Hs under a fixed time
budget to determine whether it can be proved as an invariant. If IC3 succeeds,
it effectively strengthens Hs with automatically learned invariants and makes
Hs inductive. In this case, we do not need to send states ¢ and d back to the
LLM for further diagnosis or revision. If all assertions are proved by IC3, we
have successfully verified the original assertion.

We run a dedicated IC3 instance for each assertion, and execute these in-
stances in parallel to improve performance. Each IC3 run returns either verified
or unknown. In principle, IC3 could also find a real counterexample showing
that an assertion is incorrect. In practice, this almost never occurs at this stage
because we have already applied BMC under multiple bounds during correctness
checking.

When IC3 cannot verify within a fixed time budget, we run K-Induction as
a complementary backend. We introduce K-Induction for three reasons. First,
it complements IC3: there are cases where IC3 fails to verify but K-Induction
succeeds. Second, it helps us extract K-CTIs. When K-Induction fails, it often
produces longer CTIs, which provide richer temporal context for the LLM to
diagnose failures and refine helper assertions; this is particularly useful for multi-
cycle behaviors (e.g., assertions with LTL-like temporal intent). Third, some
CTIs reported by 1-induction correspond to states that the K-Induction engine
can already prove unreachable. Filtering them out reduces unnecessary LLM
workload.

Formally, when verifying a set of m assertions Hy, ..., H,_1, K-Induction
checks the inductiveness of the strengthened assertions by issuing a SAT query
that asks whether there exist states s, ..., Sp4+x and inputs y,, . .., Yn+r—1 such

that
n+k—1 m—1 n+k—1 m—1

/\ /\ Hj(si) A /\ T(si,Yis Siv1) A \/ —H;(Sn+k)-

i=n  j=0 i=n j=0
Similarly, we can improve efficiency by parallelizing this check, splitting the
disjunction into separate SAT queries, each handled by a different worker thread
for a single term —H;(Sp4)-

IC3 with Local Proof. Running a separate IC3 instance for each assertion
can be wasteful because each instance may re-explore portions of the state space
that have already been pruned by other helper assertions, yet are unknown to
that instance. For example, in f), if H, and Hj are checked by two
independent IC3 runs, then the IC3 run for Hs may again attempt to rule out
the CTI (states ¢ and d), even though Hj already blocks state c¢. In contrast,
K-Induction can naturally conjunct all assertions and check inductiveness of the
conjunction. We do not adopt the same approach for IC3, because IC3 on a
large conjunction is often harder to solve and it also obscures which individual
assertions have been verified.

To avoid redundant exploration while still proving assertions individually, we
adopt the local proof technique [I6], which is well suited to our setting. When



CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 11

proving a target assertion, we assume that all other assertions hold as invariants
and treat them as additional constraints during the proof. If every assertion can
be proved under the assumption that the others are correct, then all assertions
are established. We leverage local proof not only to make inductiveness proofs
easier, but also to obtain more informative CTIs when a proof attempt fails,
which improves the quality of the feedback provided to the LLM.

Invariant Extraction from IC3. After the first-stage IC3 run finishes,
regardless of whether it proves the target properties within the time budget, we
extract the global invariant learned by IC3 (i.e., the infinite frame [14]). We use
this invariant as an additional constraint in the subsequent K-Induction phase
to strengthen the verification, and to filter out CTIs that are already ruled out
by the invariants established by IC3. Let the extracted invariant be denoted by
Inv. Then, the SAT query of K-Induction becomes

n+k—1 m-—1 n+k—1 n+k—1 m—1
/\ /\ HJ(SZ) A /\ T(Siayiysi-&-l) A /\ ITL’U(S,') AN \/ —‘Hj(sn_;,_k).
i=n 7=0 i=n =n 7=0

4.4 'Trace Analysis via LLMs

When an inductiveness or correctness check fails, CIll extracts the resulting trace
from the K-Induction or BMC engine and forwards it to the LLM for diagnosis
and refinement. Feeding the raw trace to the model is often inefficient, since it
typically contains many irrelevant signals and incidental assignments that are
not causally related to the violating transition. To reduce the LLM’s analysis
burden, CIIl first minimizes the trace and then exposes an on-demand trace
inspection interface that allows the LLM to retrieve only the signal information
needed for debugging.

Trace Minimize. The trace produced by the engine typically assigns values
to all signals. Many of these assignments are irrelevant for diagnosing the failure,
not only signals outside the cone of influence, but also signals whose concrete
values do not contribute to the non-inductiveness witness. We therefore apply
a lifting technique [22], widely used in IC3-style engines, to minimize the trace.
Concretely, consider two adjacent states s;_1 and s; with an input ;1 such
that T'(s;—1, ¥i—1, ;) holds in the witness trace. To minimize the assignment on
s;—1 while keeping s; fixed, lifting constructs the SAT query T(s;—1,Yi—1,8i),
which must be UNSAT, and extracts an UNSAT core over the literals of s;_1.
Literals not in the core become don’t-cares, since their values can vary without
affecting reachability of s; under y;_1. For a state sequence sg, s1, ..., Sn, lifting
is applied backwards: it minimizes s,,_1 using s,,, then minimizes s, _o using the
minimized s,_1, and so on, yielding a compact trace that preserves the witness
while retaining only the information essential for explaining the failure.

Trace Inspection. When a correctness or inductiveness check fails, CIIl
exports the resulting CEX/CTI as a trace file (e.g., VCD in hardware verifica-
tion). However, providing the entire trace to the LLM is often impractical due to
context-length limits and the substantial noise introduced by irrelevant signals.



12 Y. Su et al.

Therefore, we do not directly feed the full trace to the model. Instead, we expose
trace inspection as a Model Context Protocol (MCP) service [5], enabling the
LLM to issue tool-style queries and retrieve only the signal information needed
for diagnosis and refinement. Specifically, we provide two MCP tools:

— search_signals: searches signal names in a trace using a regex pattern and
returns the matching names.

— signal_values: returns stepwise values of a given list of signals as a JSON
object (signal name — value sequence).

This design supports an on-demand workflow: the LLM first locates candidate
signals via search_signals, then queries concise waveforms for those signals via
signal_values. In this way, the model can efficiently analyze failures without
ingesting the entire trace.

4.5 Invariant Generation via LLMs

The core of CIll lies in leveraging the LLM’s ability to analyze CTIs to under-
stand why a candidate helper assertion fails to be inductive, together with its
semantic understanding of RTL, and thereby synthesize new helper invariants.

Given a CTI after trace minimization, the LLM analyzes the design and
diagnoses why the current assertions are non-inductive, then adds new helpers
or revises existing ones to invalidate the CTI. As illustrated in [Figure 2] this can
be achieved by strengthening a helper to block the state ¢ (case (d)), weakening
it so that it is satisfied by the state d (case (e)), or leaving it unchanged and
introducing a new helper that blocks the state ¢ (case (f)).

CIll adopts an agentic interaction paradigm rather than a conventional multi-
stage LLM pipeline. The LLM functions as an autonomous agent, planning each
next step based on intermediate results instead of following a fixed prompt sched-
ule. It can proactively invoke tools and retrieve only the context needed on de-
mand (e.g., query specific signals or invoke the three checks) to support diagnosis
and refinement. Accordingly, CIII relies on a single concise prompt: once the ob-
jective, constraints, and tool semantics are specified, progress is driven primarily
by tool feedback rather than repeated prompting. The full prompt is provided
in [I]. Overall, it contains:

— Basic Concepts. A brief recap of key notions, including correctness, induc-
tiveness, and CTIs.

— Objective. A direct instruction to prove the original assertion by introduc-
ing helper assertions that invalidate CTIs.

— Tool Interface. A short description of the permitted commands for running
checks, selecting a failing assertion to generate a CTI, and inspecting traces
on demand.

— Constraints. Non-negotiable rules that bound the solution space, including
restricted edit regions, prohibiting assume statements, and forbidding any
modification of the original design or original assertions.



CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 13

4.6 Effectiveness Checking

After a CTI is produced during inductiveness checking, we store it so that we can
later determine whether newly generated helper assertions are effective (e.g., H1
is ineffective when the CTI is state b in [Figure 2[b)). We check the effectiveness
of an updated helper using a single SAT query. Formally, the stored CTI for
assertion H; (prior to the update) is a sequence of states ¢y, c1,..., k. T
validate whether this CTI is still feasible under the current set of helper asser-
tions, we issue a constrained k-step SAT query by fixing the states to the stored
CTI. Specifically, the effectiveness-checking query is:

n+k—1 m—1
A\ Hile) A ~Hi(cnin)-
i=n 7=0

If the query becomes UNSAT under the updated helper assertions, then the
previously reported CTI is no longer a witness of non-inductiveness and is con-
sidered solved. This test covers all three adjustment patterns in [Figure 2] In case
(d), strengthening Hy to Hs makes H3(c) UNSAT. In case (e), relaxing Hy to Hy
makes = H4(d) UNSAT (with t = 4). In case (f), introducing Hjs yields Hy A Hs(c)
UNSAT. In all these cases, the stored CTI becomes ineffective, indicating that
the updated helper assertions are effective. Otherwise, if the query remains SAT,
the CTT is still valid and is fed back to the LLM for the next refinement round.

5 Evaluation

5.1 Setup

Implementation. We target hardware model checking and integrate CIIl into
the rIC3 model checker [24] using ChatGPT-5.2 through the VSCode Copilot and
Codex agentic framework. Since large language models are effective at reason-
ing over high-level program structure, we move away from traditional low-level
formats (e.g., AIGER or BTOR2) as the primary verification input. Instead, we
provide the original RTL directly to the LLM and let it analyze the design at the
source level. Our pipeline uses Yosys [7] with Slang [8] to synthesize RTL into
a BTOR model, which is then passed to rIC3 to check correctness and induc-
tiveness. Based on its analysis, the LLM generates helper assertions and injects
them into the RTL to strengthen the proof. After adding these assertions, we
re-run synthesis to produce an updated BTOR instance and repeat the checks
on the revised model.

Benchmarks. We evaluate CIIl directly on high-level HDL source code
rather than the low-level netlists typical of HWMCC benchmarks. Our evalua-
tion focuses on the RISCV-Formal framework [6], targeting three RISC-V cores:
nerv, serv, and picorv32. We exclude cores generated from other languages
(e.g., VexRiscv from SpinalHDL) to ensure the LLM can analyze the original
SystemVerilog source. These benchmarks check that each processor implemen-
tation complies with the RISC-V ISA specification. Due to the sheer complexity



14 Y. Su et al.

Table 1. Evaluated RISC-V cores with lines of code (LOC), ISA options, micro-
architecture, number of checks, and number of baseline-unsolved checks.

Core LOC ISA/Options Micro-arch #Check #Unsolved
nerv 1325 RV32I (CSR/IRQ) single-stage 95 5
picorv32 2494 RV32I (C/M/IRQ) multi-cycle FSM 85 38
serv 3161 RV32I (C/CSR/MDU) bit-serial, staged ctrl 42 33

of M-type instructions (mul, div, rem series), RISCV-Formal introduces the
Alternative Operation Semantics (ALTOPS) where arithmetic operations inside
multiplication and division models are replaced with simpler bitwise operations.
This change substantially reduces the burden on solvers while keeping the pro-
cessor structures intact. We will indicate later which semantics are used in each
setting. Table |I] summarizes the micro-architectural characteristics, complexity,
and number of generated checks for each core, where each check may contain
several properties. The table reports the number of generated checks. Only in-
stances involving the M extension under ALTOPS are counted. Instances using
the original M-extension semantics are not included here.

Baselines and Protocol. We assess the effectiveness of CIIl on hard-to-
prove properties using a rigorous filtering process. For each property, we compile
the design into a BTOR2 model and attempt to prove it using three baselines:
(1) the portfolio engine in the rIC3 model checker [24], which has competi-
tive performance; (2) the local-proof engine in rIC3, which can be effective for
multi-property verification; and (3) the AVR model checker, which synthesizes
invariants in word-level [I5]. Unlike CIll, which operates on the HDL source code
and leverages semantic information, these baselines run solely on the compiled
BTOR2 model. We then collect the properties that none of the baselines can
solve within 5 hours and evaluate CIIl on this subset. The last column of [Table 1]
reports the number of instances unsolved by the baselines. Overall, the union of
the baseline engines solves 146 out of 222 instances, leaving 76 instances for CIIl
to evaluate.

Hardware & Software. All experiments are conducted on an AMD EPYC
7532 server with 256 GB RAM. In each CIll refinement round, we use k = 3 for
inductiveness checking. We first perform a correctness check for 15s on the con-
junction of all original and accumulated helper assertions. If it passes, we spawn
two worker threads per assertion and run local-proof and non-local IC3 instances
to check inductiveness. Since we observe that a larger number of helper assertions
can degrade the efficiency of the local-proof engine, we scale the inductiveness-
checking timeout with the helper count and set the time limit to 60 + 6 x |H|
seconds, where |H| is the current number of helper assertions.

We have made our implementation and experimental results available at [I].

5.2 Experimental Results of CIll

If the LLM violates any specified rules (e.g., modifying the DUT or inserting
assume statements), the run is immediately flagged as a failure. [Table 2| sum-



CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 15
Table 2. CIll results on hard instances.
Case r1C3-CIl Baseline
Time(s) #Tried Engine/Total #Inv. Inv. LOC
nerv/causal 840 1 29.5% 6 50 TO
nerv/pc_bwd 1415 1 37.6% 3 30 TO
nerv/reg 956 2 17.26% 5 38 TO
nerv/csrc_mcycle 887 1 39.23% 7 57  TO
nerv/csrc_ minstret 1185 1 36.96% 7 87 TO
picorv32/pc_bwd 1106 1 35.9% 2 21 TO
picorv32/reg 9257 2 24.26% 23 70 TO
picorv32/add 5344 3 33.46% 9 92 TO
picorv32/addi 7652 1 34.04% 16 111 TO
picorv32/c_add 4707 1 23.9% 8 67 TO
picorv32/c_addi4spn 7104 1 31.36% 15 98 TO
picorv32/sub 12457 1 33.1% 17 161  TO
picorv32/c_sub 7221 1 27.12% 12 65 TO
picorv32/slt 8691 2 23.77% 15 157  TO
picorv32/sltu 10060 1 28.9% 15 177 TO
picorv32/slti 3350 1 23.19% 6 52 TO
picorv32/auipc 9436 1 25.61% 17 131 TO
picorv32/jal 8457 4 21.2% 11 121 TO
picorv32/jalr 8812 1 16.63% 7 62 TO
picorv32/c_j 11894 1 32.29% 28 181 TO
picorv32/c_jal 11318 1 27.58% 9 104 TO
picorv32/blt 12494 2 29.91% 17 122 TO
picorv32/bltu 15228 1 44.17% 44 277 TO
picorv32/bge 21831(TO) 6 6.02% 27 155  TO
picorv32/bgeu 5050 2 22.44% 25 212 TO
picorv32/beq 15525 1 25.4% 24 204 TO
picorv32/bne 13917 2 27.84% 24 151  TO
picorv32/lb 4116 1 28.72% 20 162 TO
picorv32/lbu 4313 1 17.41% 11 79 TO
picorv32/lh 6460 1 23.59% 8 59 TO
picorv32/lhu 5017 1 14.91% 6 23 TO
picorv32/lw 3577 1 27.7% 5 47 TO
picorv32/sb 3677 2 27.22% 8 95  TO
picorv32/sh 3965 1 15.23% 5 50 TO
picorv32/sw 6904 1 39.57% 12 4  TO
picorv32/mul-altops 14843 1 28.7% 20 184 TO
picorv32/mulh-altops 12002 1 28.38% 25 201 TO
picorv32/mulhu-altops 14058 1 28.06% 11 90 TO
picorv32/mulhsu-altops 10117 1 22.88% 17 169 TO
picorv32/div-altops 10458 1 55.01% 34 193 TO
picorv32/divu-altops 6367 1 31.76% 10 71 TO
picorv32/rem-altops 12371 1 25.5% 25 183 TO
picorv32/remu-altops 13137 1 30.55% 21 195 TO
picorv32/M(8) TO - - - - TO
serv/* TO - - - - TO




16 Y. Su et al.

marizes the results of evaluating CIIl on all baseline-unsolved cases. For each
case, the table reports the total runtime of CIll and the number of attempts
required to obtain a successful proof. CIIl successfully solves all PicoRV32 and
NERV cases that the rIC3 or AVR baseline engines cannot solve, except for the
M-extension, demonstrating the effectiveness of CIIL.

CIII succeeds in its final attempt to solve picorv32/bge, but it times out.
CIll cannot solve the original M-extension because the IC3 engine used in CIIl
operates at the bit level. Bit-blasting 32-bit multiplication makes the resulting
SAT instances extremely difficult. Using SMT-based reasoning and abstraction
techniques may help address this problem.

CIll fails to solve the serv cases. In this core, each instruction can take a
very large number of cycles. For example, an add instruction may take roughly
one cycle per bit, so the overall latency scales with the operand width. As a
result, correctness checking often becomes ineffective because the shortest coun-
terexamples can be close to 100 cycles. This makes the serv core particularly
challenging for CIII.

further analyzes CIII’s behavior across cases. It reports the average
fraction of the total runtime spent on BMC, K-Induction, and IC3 (Engine/To-
tal), the average number of generated helper assertions (# Inv.), and the average
lines of code of these helpers (Inv. LOC). The results indicate that most of the
time is spent on LLM reasoning rather than on executing the verification engines,
which suggests that faster inference could further improve CIll’s overall perfor-
mance. Meanwhile, CIIl typically requires only tens of helper assertions and only
tens of lines of code to achieve a noticeable acceleration of model checking.

Overall, by combining CIll with the baseline engine, we can solve all checks
generated by RISCV-Formal for NERV and PicoRV32 (excluding the original M-
extension), demonstrating the effectiveness of using LLMs to generate invariants
for model checking.

5.3 Verification via Invariant Migration

We observe that instructions with similar semantics often share underlying in-
ductive invariants. Therefore, we can boot-strap the verification of a new in-
struction by migrating and adapting helper assertions from a previously proved
instruction.

We use a successful proof as a starting point to verify other instructions.
We identify target instructions with similar functionality. For instance, s1t (set
less than) shares comparison logic with sub (subtraction); auipc is structurally
similar to addi but operates on the program counter; bgeu is the inverse of bltu
and bge is just the signed counterpart of bgeu. In this workflow, we manually
map the variable names in the helper assertions from the source instruction to
the target and provide them to CIIl. CIll then validates these candidates and,
if necessary, triggers the refinement loop to adjust them or generate additional
invariants.

Table Bl summarizes the results. The “From” column indicates the source
instruction whose invariants were used as the seed. Results demonstrate that



CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 17

Table 3. Some picorv32 Instructions Proved with Invariant Migration

Case From  Time #lInvar.
addi add 20 min 23
auipc addi 40 min 25
c_addi series addi 23 min 33
sub, c_sub add 30 min 23
slt series sub 10 min 22
sw sh sb 1w 25 min 13 to 15
lhu 1lbu 1h 1b 1w 15 min 7to8
c_lw 1w 19 min 7
c_sw c_lwsp c_swsp c_lw 10 min 6to7
ALTOPS mul add 54 min 23
ALTOPS mulh mulhsu mulhu mul 8 min 23
ALTOPS div divu rem remu mul 8 min 23
Unsigned branch e.g. bgeu bltu 10 min 47
Signed branch e.g. bge blt 15 min 48

CIll can successfully adapt existing invariants and verify properties much faster,
with most runs converging in 10 to 30 minutes.

6 Related Work

Verifying properties of a transition system by searching for inductive invariants
is a powerful approach. However, efficiently generating invariants that are both
correct and inductive remains challenging. As a result, a large body of work
has focused on producing useful inductive invariants more efficiently. Among
these approaches, several methods iteratively construct inductive invariants by
analyzing CTIs.

IC3/PDR. IC3 [10] maintains a sequence of frames and repeatedly refines
them using CT1Is. To generalize a CTT, IC3 extracts an unsat core from a relative-
inductiveness query and then drops literals one by one. Both CIll and IC3 aim
to show that CTIs are unreachable, and both generalize from CTIs to obtain
stronger overall invariants. However, their proof obligations differ: the CTIs
blocked by IC3 are always bad states, whereas CIIl may instead block a CTI
induced by a helper assertion, which does not necessarily correspond to a bad
state. Their generalization procedures also diverge. IC3 generalizes CTIs syn-
tactically by removing literals, while CIIl prompts an LLM to synthesize helper
assertions from CTIs. Moreover, IC3 explicitly maintains a sequence of frames
and produces invariants that are guaranteed to hold up to a bounded number
of steps. By contrast, CIll expects the LLM to produce correct assertions di-
rectly (and, if not, refines them using the counterexample returned by BMC),
and therefore does not maintain frames in the same manner as IC3.

Invariant Generalization via Humans. IC3 is largely restricted to in-
variants in a two-layer CNF form over state variables. Even when additional
predicates are introduced via syntactic restrictions or templates, it can still be



18 Y. Su et al.

difficult to generate the required invariants efficiently, especially in the presence
of quantifiers. Ivy [19] addresses this limitation by incorporating human input to
generalize CTIs into candidate invariants. It first uses BMC to validate candi-
date invariants; if they pass, Ivy then checks inductiveness. This loop continues
until an inductive invariant is found. CIIl follows a similar core idea, but re-
places human generalization with an LLM that analyzes CTIs and synthesizes
invariants. Moreover, Ivy primarily targets distributed protocols, which are of-
ten infinite-state systems, whereas CIll focuses on hardware formal verification.
Finally, CIl leverages local proof and IC3 to reduce the burden of CTI analysis
and generalization.

Invariant Generalization via LLMs. In software verification, LLMs have
been used to generate loop invariants in a guess-and-check workflow. Lam4Inv [27]
uses bounded model checking to validate correctness and employs an SMT solver
to check inductiveness of LLM-generated invariants; when a counterexample is
found, it further prompts the LLM to refine the invariant. CIll is built on the
same core idea, but strengthens the proof process via local proofs and uses IC3
to reduce the burden on the LLM. In terms of evaluation scale, CIll targets hard-
ware designs with a few thousand lines of HDL, whereas the programs verified
in Lam4Inv are typically under 100 lines [4].

7 Conclusion

We presented CIll, a CTI-guided framework that leverages large language models
to synthesize helper assertions to assist in verifying the original assertions. CIII
iterates between correctness checking and inductiveness checking, using CTIs
to guide the LLM toward generating invariants that invalidate the CTIs while
generalizing beyond specific counterexamples, and relying on formal engines to
validate and refine the generated assertions. By incorporating automatic invari-
ant learning via IC3, local proof, and invariant extraction, CIIl aims to reduce
the LLM effort required to handle CTIs. CIll proved compliance with RISC-V
standard of NERV and PicoRV32 processors without M extention, which state-
of-the-art model checkers have not yet achieved. This indicats LLM-guided in-
variant generation is a promising direction for scaling hardware formal verifica-
tion. Future work includes improving CTI interpretation and invariant synthesis,
and exploring tighter integration between model checking engines and LLM rea-
soning.

References

1. Cill artifact. https://github.com/gipsyh/cill-exp

Hardware model checking competition. https://hwmcc.github.io

3. Jasper formal verification platform. |https://www.cadence.com/en US/home/
tools /system-design-and-verification /formal-and-static- verification.html

4. Lamdinv benchmark. https://github.com/SoftWiser-group /LaM4Inv/tree/main/
Benchmarks/Linear/c

N


https://github.com/gipsyh/cill-exp
https://hwmcc.github.io
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification.html
https://github.com/SoftWiser-group/LaM4Inv/tree/main/Benchmarks/Linear/c
https://github.com/SoftWiser-group/LaM4Inv/tree/main/Benchmarks/Linear/c

© XN o

10.

11.

12.

13.

14.

15.

16.

17.

18.

CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 19

Mcp. https://www.anthropic.com/news/model-context-protocol

Riscv formal. |https://github.com/YosysHQ /riscv-formal

Yosys. https://github.com/YosysHQ /yosys

Yosys-slang. https://github.com/povik /yosys-slang

Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of bdds. In: Irwin, M.J. (ed.) Proceedings of the 36th
Conference on Design Automation, New Orleans, LA, USA, June 21-25, 1999. pp.
317-320. ACM Press (1999). [https://doi.org/10.1145 /309847.309942

Bradley, A.R.: Sat-based model checking without unrolling. In: Jhala, R., Schmidt,
D.A. (eds.) Verification, Model Checking, and Abstract Interpretation - 12th In-
ternational Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6538, pp. 70-87. Springer
(2011). |https://doi.org/10.1007/978-3-642-18275-4 7

Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.A., Veith, H.: Model
checking, 2nd Edition. MIT Press (2018), https://mitpress.mit.edu/books/
model-checking-second-edition

Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer Publishing Company, Incorporated, 1st edn. (2018). https://doi.org/10.
1007/978-3-319-10575-8

Dureja, R., Gurfinkel, A., Ivrii, A., Vizel, Y.: IC3 with internal signals. In: Formal
Methods in Computer Aided Design, FMCAD 2021, New Haven, CT, USA, Oc-
tober 19-22, 2021. pp. 63-71. IEEE (2021). [https://doi.org/10.34727/2021 /ISBN.
978-3-85448-046-4 14

Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Bjesse, P., Slobodova, A. (eds.) International Confer-
ence on Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX,
USA, October 30 - November 02, 2011. pp. 125-134. FMCAD Inc. (2011), http:
//dl.acm.org/citation.cfm?1id=2157675

Goel, A., Sakallah, K.A.: Model checking of verilog RTL using IC3 with syntax-
guided abstraction. In: Badger, J.M., Rozier, K.Y. (eds.) NASA Formal Methods
- 11th International Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019,
Proceedings. Lecture Notes in Computer Science, vol. 11460, pp. 166-185. Springer
(2019). [https://doi.org/10.1007/978-3-030-20652-9 11} https://doi.org/10.1007/
978-3-030-20652-9 11

Goldberg, E., Giidemann, M., Kroening, D., Mukherjee, R.: Efficient verification
of multi-property designs (the benefit of wrong assumptions). In: Madsen, J.,
Coskun, A.K. (eds.) 2018 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2018, Dresden, Germany, March 19-23, 2018. pp. 43-48. IEEE
(2018). [https://doi.org/10.23919/DATE.2018.8341977, lhttps://doi.org/10.23919/
DATE.2018.8341977

Luka, A., Vizel, Y.: Property directed reachability with extended resolution. In:
Piskac, R., Rakamaric, Z. (eds.) Computer Aided Verification - 37th International
Conference, CAV 2025, Zagreb, Croatia, July 23-25, 2025, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 15931, pp. 258-280. Springer (2025). https:
//doi.org/10.1007/978-3-031-98668-0 13

McMillan, K.L.: Interpolation and sat-based model checking. In: Jr., W.A.H.,
Somenzi, F. (eds.) Computer Aided Verification, 15th International Conference,
CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. Lecture Notes in
Computer Science, vol. 2725, pp. 1-13. Springer (2003). https://doi.org/10.1007/
973-3-540-45069-6 1


https://www.anthropic.com/news/model-context-protocol
https://github.com/YosysHQ/riscv-formal
https://github.com/YosysHQ/yosys
https://github.com/povik/yosys-slang
https://doi.org/10.1145/309847.309942
https://doi.org/10.1145/309847.309942
https://doi.org/10.1007/978-3-642-18275-4\_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4\_14
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_14
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4\_14
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_14
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/978-3-030-20652-9\_11
https://doi.org/10.1007/978-3-030-20652-9_11
https://doi.org/10.1007/978-3-030-20652-9_11
https://doi.org/10.1007/978-3-030-20652-9_11
https://doi.org/10.23919/DATE.2018.8341977
https://doi.org/10.23919/DATE.2018.8341977
https://doi.org/10.23919/DATE.2018.8341977
https://doi.org/10.23919/DATE.2018.8341977
https://doi.org/10.1007/978-3-031-98668-0\_13
https://doi.org/10.1007/978-3-031-98668-0_13
https://doi.org/10.1007/978-3-031-98668-0\_13
https://doi.org/10.1007/978-3-031-98668-0_13
https://doi.org/10.1007/978-3-540-45069-6\_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6\_1
https://doi.org/10.1007/978-3-540-45069-6_1

20

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Y. Su et al.

Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety ver-
ification by interactive generalization. In: Krintz, C., Berger, E.D. (eds.) Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-
17, 2016. pp. 614-630. ACM (2016). https://doi.org/10.1145/2908080.2908118,
https://doi.org/10.1145/2908080.2908118

Reid, A., Chen, R., Deligiannis, A., Gilday, D., Hoyes, D., Keen, W., Pathirane,
A., Shepherd, O., Vrabel, P., Zaidi, A.: End-to-end verification of processors with
ISA-Formal. In: Chaudhuri, S., Farzan, A. (eds.) Proceedings of the 28th Interna-
tional Conference on Computer Aided Verification (CAV 2016). Lecture Notes in
Computer Science, vol. 9780, p. 42-58. Springer International Publishing, Cham,
Switzerland (2016). https://doi.org/10.1007/978-3-319-41540-6 3, applied formal
verification framework for commercial processor designs and ISA correctness

Roy, P., Yeung, P., Hong, J., Desai, A., Raj, A., Agarwal, C., Patel, D.: Hierarchical
formal verification and progress checking of network-on-chip design. In: Proceed-
ings of the Design and Verification Conference and Exhibition (DVCon). DVCon
(2025), available: |https://dvcon-proceedings.org/wp-content /uploads,/1025-2.pdf
Seufert, T., Winterer, F., Scholl, C., Scheibler, K., Paxian, T., Becker, B.: Every-
thing you always wanted to know about generalization of proof obligations in PDR.
CoRR abs/2105.09169 (2021), https://arxiv.org/abs/2105.09169

Sheeran, M., Singh, S., Stalmarck, G.: Checking safety properties using induc-
tion and a sat-solver. In: Jr., W.A.H., Johnson, S.D. (eds.) Formal Methods in
Computer-Aided Design, Third International Conference, FMCAD 2000, Austin,
Texas, USA, November 1-3, 2000, Proceedings. Lecture Notes in Computer Science,
vol. 1954, pp. 108-125. Springer (2000). https://doi.org/10.1007/3-540-40922-X 8
Su, Y., Yang, Q., Ci, Y., Bu, T., Huang, Z.: The ric3 hardware model checker. In:
Piskac, R., Rakamaric, Z. (eds.) Computer Aided Verification - 37th International
Conference, CAV 2025, Zagreb, Croatia, July 23-25, 2025, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 15931, pp. 185-199. Springer (2025). https:
//doi.org/10.1007/978-3-031-98668-0 9

Tian, E., Ci, Y., Yang, Q., Li, Y., Lyu, Z.: Assertcoder: Llm-based asser-
tion generation via multimodal specification extraction. CoRR abs/2507.10338
(2025). |https://doi.org/10.48550/ ARXIV.2507.10338, https://doi.org/10.48550/
arXiv.2507.10338

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le,
Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language
models. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A.
(eds.) Advances in Neural Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022 (2022), http://papers.nips.cc/paper files/
paper /2022 /hash/9d5609613524ecf4f15af0f7Tb31abcad- Abstract- Conference.html
Wu, G., Cao, W., Yao, Y., Wei, H., Chen, T., Ma, X.: LLM meets bounded model
checking: Neuro-symbolic loop invariant inference. In: Filkov, V., Ray, B., Zhou, M.
(eds.) Proceedings of the 39th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2024, Sacramento, CA, USA, October 27 - November 1,
2024. pp. 406-417. ACM (2024). https://doi.org/10.1145/3691620.3695014, https:
//doi.org/10.1145/3691620.3695014

Xin, R., Xi, C., Yang, J., Chen, F., Wu, H., Xiao, X., Sun, Y., Zheng, S., Ding, M.:
Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving.
In: Che, W., Nabende, J., Shutova, E., Pilehvar, M.T. (eds.) Proceedings of the 63rd


https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1007/978-3-319-41540-6\_3
https://doi.org/10.1007/978-3-319-41540-6_3
https://dvcon-proceedings.org/wp-content/uploads/1025-2.pdf
https://arxiv.org/abs/2105.09169
https://doi.org/10.1007/3-540-40922-X\_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-031-98668-0_9
https://doi.org/10.1007/978-3-031-98668-0_9
https://doi.org/10.1007/978-3-031-98668-0_9
https://doi.org/10.1007/978-3-031-98668-0_9
https://doi.org/10.48550/ARXIV.2507.10338
https://doi.org/10.48550/ARXIV.2507.10338
https://doi.org/10.48550/arXiv.2507.10338
https://doi.org/10.48550/arXiv.2507.10338
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014
https://doi.org/10.1145/3691620.3695014

29.

CIll: CTI-Guided Invariant Generation via LLMs for Model Checking 21

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), ACL 2025, Vienna, Austria, July 27 - August 1, 2025. pp. 32588-32599.
Association for Computational Linguistics (2025), https://aclanthology.org/2025.
acl-long.1565/

Yan, Z., Fang, W., Li, M., Li, M., Liu, S., Xie, Z., Zhang, H.: Assertllm: Gen-
erating hardware verification assertions from design specifications via multi-llms.
In: Nakamura, Y., Wang, Y. (eds.) Proceedings of the 30th Asia and South Pa-
cific Design Automation Conference, ASPDAC 2025, Tokyo, Japan, January 20-
23, 2025. pp. 614-621. ACM (2025). https://doi.org/10.1145/3658617.3697756,
https://doi.org/10.1145/3658617.3697756


https://aclanthology.org/2025.acl-long.1565/
https://aclanthology.org/2025.acl-long.1565/
https://doi.org/10.1145/3658617.3697756
https://doi.org/10.1145/3658617.3697756
https://doi.org/10.1145/3658617.3697756

	CIll: CTI-Guided Invariant Generation via LLMs for Model Checking

